« Whey Protein Q&A - Whey Protein Isolate Versus Whey Protein Concentrate Part 2 - Denatured Proteins | Main | Whey Protein Q&A - Protein Bars and Protein Requirements »

March 03, 2012

Whey Protein Q&A - Whey Protein Isolate Versus Whey Protein Concentrate Part 3 - Glycation Products in Protein Supplements

BlogProQAC Q. What are glycation products?

A. Glycation products are altered protein structures resulting from the chemical interaction of proteins, sugars, and fats.  Glycation products can be produced both in our foods and in our bodies as well.  When the chemical changes proceed far enough, the resulting structures are called advanced glycation endproducts, or, AGEs, for short. Various glycation products and AGEs have been found to be consistently elevated in the body under conditions of aging and disease.

For example, a particular glycation product, called furosine, has been shown to be elevated in patients with Alzheimer’s disease and diabetes:

Study Link – Plasma protein glycation in Alzheimer's disease.

Quote from the above study:

Recent studies have suggested that formation of advanced glycation end–products (AGEs) in some brain proteins could be associated with Alzheimer's disease…Protein glycation was evaluated in plasma with a highly specific HPLC–UV technique, using furosine, which is the acid hydrolysis product of epsilon–deoxy–fructosyl–lysine Plasma furosine was almost two times higher in subjects with Alzheimer's disease (p<.005) than in controls, but still 50% lower than in diabetic patients (P<.02).

And similar to the glycation phenomenon which occurs in our body under the conditions of aging, certain types of food processing are known to result in the production of high amounts of furosine as well. 

As relates specifically to protein powders, the following study tested the furosine content of several commercially available sports supplements produced using milk based ingredients like whey protein isolate, whey protein concentrate, and casein. The furosine levels the researchers found was shockingly high in products which contained whey protein concentrate:

Study Link – Assessing nutritional quality of milk–based sport supplements as determined by furosine.

Quote from the above study:

Furosine content ranged from 2.8 to 1125.7 mg/100 g protein in commercial sport supplements being usually lower in samples containing mainly whey protein isolates or casein, as compared with whey protein concentrates. It is estimated that 0.1–36.7% of the lysine content is not available in this type of products. The use of high quality ingredients for the manufacture of sport supplements reveals important, since it could be the major source of protein intake of certain group of consumers in high or moderate training regime. Furosine is an appropriate indicator to estimate the nutritional quality of sport supplements. A reference value of 70 mg furosine/100 g protein content in dried sport supplements could be set up for controlling the quality of milk–based ingredients used in the formulation. Samples with higher levels are suspected of use of low quality milk–based ingredients or inappropriate storage conditions.

Knowing that glycation products formed in our body may be partly responsible for the degenerative effects of aging, and knowing that glycation products have repeatedly been associated with various degenerative diseases, it’s logical to think that perhaps eating these same glycated proteins may not be such a great idea if we value our long–term health.

Q.  It’s often assumed that high protein intakes aren’t particularly harmful because the body will simply rid itself of the excess.  Is this true?

A.  Some proteins which have been altered by the industrial processes we’ve been describing are likely to have vastly different toxicity profiles relative to minimally-processed protein foods.  In other words, high protein intakes, per se, aren’t likely to be problematic, but high amounts of protein supplements and industrially-processed proteins may be. 

As a bit of background, mainstream nutritionists and doctors often maintain that the average American diet contains sufficient (and, perhaps, too much) protein, and that even the protein requirements of hard-training athletes are only slightly above those of sedentary individuals.  These same experts sometimes also warn that, not only is high protein consumption unnecessary, but that excess protein intake could tax kidney function, and may, thus, actually be harmful.  The bodybuilding, fitness, and supplement communities, however, have largely ignored these warnings, citing evidence of cultures consuming high protein intakes without apparent harm. 

Slowly, some within the medical community have begun to realize that their peers may have previously underestimated the importance of protein in a healthy diet geared towards fat loss and muscle growth or maintenance.  Perhaps spurred by the low-carb and high-protein diet craze of several years ago, the value of high protein intakes has received increasing justification from the medical community.  It’s common now, in fact, to see various protein-centric diet books - and their accompanying protein-containing snack bars and concoctions - peddled by medical doctors.

But, almost universally, both the medical and fitness crowds completely ignore the uniquely toxic effects of the denatured and glycated proteins commonly found in nutritional supplements.  

As protein supplements and protein-fortified foods have become more widely used across various segments of society, it’s likely that the consumption of glycated and industrially-denatured proteins has increased commensurately.  As such, because protein supplements may have completely unique toxicity profiles relative to traditional protein-containing foods, the health effects of industrially-denatured and glycated proteins should be more widely addressed.

While the human body does possess mechanisms to rid the body of excess protein, “getting rid” of glycated proteins is exactly what the body does not do efficiently – and this is what makes many protein–based nutritional supplements uniquely toxic relative to minimally–cooked protein–rich foods.  We’ve already seen, for example, how altered protein structures may promote the growth of harmful intestinal bacteria.  In addition, eating denatured proteins and glycation products (as many users of protein powder, protein bars and ready–to–drink protein shakes unknowingly do), has been shown to add to the AGE burden of the body, and may be particularly detrimental to kidney function:

Study Link – Advanced glycation endproducts (AGEs) as uremic toxins.

Quote from the above study:

Dietary AGEs may contribute significantly to the total AGE load of the body, particularly in uremia.

So, while high intakes of food-based proteins have not been shown to impair kidney function in healthy individuals, there is significant reason to believe that high intakes of many common protein supplements may.

It has been found, for example, that eating glycated protein causes a major increase in systemic inflammation – including inflammatory disease markers such as C–reactive protein, even in healthy subjects:

Study Link – Diet–derived advanced glycation end products are major contributors to the body's AGE pool and induce inflammation in healthy subjects.

Quote from the above study:

Advanced glycation end products (AGEs) are a heterogeneous group of compounds that form continuously in the body. Their rate of endogenous formation is markedly increased in diabetes mellitus, a condition in which AGEs play a major pathological role. It is also known, however, that AGEs form during the cooking of foods, primarily as the result of the application of heat. This review focuses on the generation of AGEs during the cooking of food, the gastrointestinal absorption of these compounds, and their biological effects in vitro and in vivo. We also present preliminary evidence of a direct association between dietary AGE intake and markers of systemic inflammation such as C–reactive protein in a large group of healthy subjects. Together with previous evidence from diabetics and renal failure patients, these data suggest that dietary AGEs may play an important role in the causation of chronic diseases associated with underlying inflammation.

AGEs are also known to damage blood vessels, and many researchers have implicated AGEs as the major factors responsible for the vascular damage associated with kidney disease and diabetes. Building logically from this, some researchers have proposed a very plausible connection between the ingestion of glycation products in foods and the development of diabetes and subsequent diabetic complications like kidney disease:

Study Link – Possible link of food–derived advanced glycation end products (AGEs) to the development of diabetes.

Quote from the above study:

The formation and accumulation of advanced glycation end products (AGEs) have been known to progress at an accelerated rate under diabetes, and there is accumulating evidence that AGEs play a role in the development of diabetes by inducing islet beta cell damage and/or insulin resistance. Further, there are several animal studies to suggest that dietary AGEs are involved in insulin resistance, visceral obesity and the development of diabetes.

So, despite the common misconception that denatured and glycated proteins are merely inert, or “wasted,” the evidence is overwhelmingly clear that they are, instead, often mildly and cumulatively toxic.

FamilyShot2013




TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341cbdce53ef01676354d339970b

Listed below are links to weblogs that reference Whey Protein Q&A - Whey Protein Isolate Versus Whey Protein Concentrate Part 3 - Glycation Products in Protein Supplements:

Comments

  • We Specialize In...
  • The Best All-Natural Supplements
  • All–Natural Whey Protein Isolate
  • Whey Protein with No Artificial Sweeteners
  • Fiber Supplements
  • BioAvailable Magnesium Supplements
  • Creapure Creatine Monohydrate
  • Detox Supplements
  • Weight Loss Supplements
  • Muscle–Building Supplements
  • Anti–Aging Supplements
  • Kosher Supplements
  • Bodybuilding Supplements
No claims found on our web pages or in print have been evaluated by the Food and Drug Administration. These products are not intended to diagnose, treat, cure, or prevent any disease. No claim or opinion on these pages are intended to be, nor should be construed to be, medical advice. Please consult with a healthcare professional before starting any diet or exercise program.